displacement n. 1.轉(zhuǎn)位,移動(dòng);取代,置換;(人的)流離失所。 2 ...
constraint n. 1.強(qiáng)迫,拘束。 2.約束,壓抑,拘泥。 3.強(qiáng)制 ...
constraint n. 1.強(qiáng)迫,拘束。 2.約束,壓抑,拘泥。 3.強(qiáng)制力。 4.緊張感[狀態(tài)]。 by constraint 勉強(qiáng),強(qiáng)迫。 feel constraint覺(jué)得局促不安,感受壓迫。 show constraint顯得局促。 under [in] constraint 被迫,不得不;被束縛著。
displacement n. 1.轉(zhuǎn)位,移動(dòng);取代,置換;(人的)流離失所。 2.撤換,免職。 3.【機(jī)械工程】(活塞)排氣量;【航?!颗潘俊惨话阒杠娕灥呐潘浚簧檀呐潘恳话阌?gross [net] ton(nage)〕。 4.【化學(xué)】置換(作用),取代(作用);【物理學(xué)】位移;【醫(yī)學(xué)】移位;【生物學(xué)】替位;【藥學(xué)】濾過(guò);【地質(zhì)學(xué);地理學(xué)】(斷層)移動(dòng)。 displacement nitration process 【化學(xué)】取代硝化。
Topology optimization design of continuum structures under stress and displacement constraints 應(yīng)力和位移約束下連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化
Topological optimization of continuum structure with stress and displacement constraints under multiple loading cases 多工況應(yīng)力和位移約束下連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化
Then using the method of unit virtual - load , the displacement constraints are transformed into a explicit function to the design variables 然后利用單位虛載荷法將位移約束轉(zhuǎn)化為設(shè)計(jì)變量與約束的顯式關(guān)系。
Third , for the problem of the stress , local stability and displacement constraints , the sequential quadratic programming ( sqp ) method is adopted in this paper 第三,對(duì)于應(yīng)力約束、局部穩(wěn)定約束和位移約束的問(wèn)題,本文采用序列二次規(guī)劃sqp方法進(jìn)行了求解。
The sectional optimization theory of membrane structure under size , stress and displacement constraints is developed . a special optimization module is developed by using pcl language of msc . patran 發(fā)展了膜結(jié)構(gòu)在尺寸、應(yīng)力和位移約束下的截面優(yōu)化理論,并利用msc . patran提供的pcl語(yǔ)言,開(kāi)發(fā)了專用的優(yōu)化模塊。
The structural dynamic optimum design is an advanced subject in the field of engineering structure design at present . the structural optimization problem under dynamic stress and displacement constraints is attached importance 結(jié)構(gòu)動(dòng)力優(yōu)化設(shè)計(jì)是當(dāng)前工程結(jié)構(gòu)設(shè)計(jì)研究領(lǐng)域的前沿性課題,其中的結(jié)構(gòu)動(dòng)力響應(yīng)優(yōu)化(以動(dòng)位移、動(dòng)應(yīng)力為目標(biāo)函數(shù)或約束)近年來(lái)受到廣泛重視。
The bar sectional sizes are optimized to make the weight of the structure minimized under constraints of stress , displacement and local stability . at the second step , supposing the active displacement constraints of the first step keeping unchanged . a quadratic programming model that increases the structural rigidity is solved 求解時(shí)分為兩層,第一層在給定節(jié)點(diǎn)位置下對(duì)桿件截面進(jìn)行優(yōu)化,同時(shí)考慮了應(yīng)力、局部穩(wěn)定約束和位移約束的重量最輕;第二層假定截面層的有效位移約束作用不變,求解一個(gè)使桁架剛度增強(qiáng)的二次規(guī)劃問(wèn)題,獲得既不違反約束,又使目標(biāo)函數(shù)不上升的新的節(jié)點(diǎn)位置,再返回第一層。
2 . for the problem with size , stress and displacement constraints , the stress constraint is transformed into movable lower bounds of sizes , the displacement constraint is transformed into an approximate function which explicitly includes design variables by using mohr integral theory . a mathematical programming model of the optimization problem is set up . the dual programming of the model is approached into a quadratic programming model 2 .對(duì)于尺寸、應(yīng)力和位移約束的問(wèn)題,將應(yīng)力約束化為動(dòng)態(tài)下限,用單位虛荷載方法將位移約束近似顯式化,構(gòu)造優(yōu)化問(wèn)題的數(shù)學(xué)規(guī)劃模型,將其對(duì)偶規(guī)劃處理為二次規(guī)劃問(wèn)題,采用lemke算法進(jìn)行求解,得到滿足尺寸、應(yīng)力和位移約束條件的截面最優(yōu)解。